Unique Reconstruction of a Lambertian Optical Surface from Images Full article
Journal |
Siberian Advances in Mathematics
ISSN: 1055-1344 , E-ISSN: 1934-8126 |
||
---|---|---|---|
Output data | Year: 2024, Volume: 34, Number: 3, Pages: 196-208 Pages count : 13 DOI: 10.1134/S1055134424030036 | ||
Tags | Photometry, optical surface, Lambert’s law, inverse problem, optical system, weight function, ideal image, system of implicit equations, branching, critical point, attendant point, uniqueness of solution. | ||
Authors |
|
||
Affiliations |
|
Funding (1)
1 | Sobolev Institute of Mathematics | FWNF-2022-0009 |
Abstract:
Abstract: Within the framework of inverse problems of photometry, we study questions onreconstruction of the spatial location and luminosity of a Lambertian optical surface from itsimages obtained with the use of a small number of optical systems. We study causes of ambiguityin reconstruction of the location of such a surface. We suggest criteria for existence of a uniquesolution of the inverse problem on reconstruction of a luminous surface from three images forgeneral weight functions and apply the results to specific classes of weight functions that modelthe degree of transparency of the medium (including its absorption or scattering)
Cite:
Derevtsov E.Y.
Unique Reconstruction of a Lambertian Optical Surface from Images
Siberian Advances in Mathematics. 2024. V.34. N3. P.196-208. DOI: 10.1134/S1055134424030036 Scopus РИНЦ OpenAlex
Unique Reconstruction of a Lambertian Optical Surface from Images
Siberian Advances in Mathematics. 2024. V.34. N3. P.196-208. DOI: 10.1134/S1055134424030036 Scopus РИНЦ OpenAlex
Original:
Деревцов Е.Ю.
О единственности определения ламбертовой оптической поверхности по изображениям
Математические труды. 2024. Т.27. №4. С.57-80. DOI: 10.25205/1560-750X-2024-27-4-57-80
О единственности определения ламбертовой оптической поверхности по изображениям
Математические труды. 2024. Т.27. №4. С.57-80. DOI: 10.25205/1560-750X-2024-27-4-57-80
Dates:
Submitted: | May 27, 2024 |
Accepted: | Jun 13, 2024 |
Published print: | Sep 18, 2024 |
Published online: | Sep 18, 2024 |
Identifiers:
Scopus: | 2-s2.0-85204307714 |
Elibrary: | 69201090 |
OpenAlex: | W4402698183 |