Sciact
  • EN
  • RU

Building an Ensemble of Time Series Models Using Empirical Risk Space Научная публикация

Конференция 2024 International Russian Automation Conference Sochi, Russia September 8-14, 2024
08-14 сент. 2024 , Сочи
Сборник Proceedings 2024 International Russian Automation Conference (RusAutoCon) Sochi, Russia September 8-14, 2024
Сборник, IEEE. 2024. ISBN 979-8-3503-4981-8.
Вых. Данные Год: 2024, Том: 1, Страницы: 751-756 Страниц : 6 DOI: 10.1109/rusautocon61949.2024.10694116
Ключевые слова univariate time series; prediction; ensembling; specialized experts.
Авторы Litvinenko Dmitriy 1 , Berikov Vladimir 2
Организации
1 Novosibirsk State University
2 Sobolev Institute of Mathematics SB RAS

Информация о финансировании (1)

1 Институт математики им. С.Л. Соболева СО РАН FWNF-2022-0015

Реферат: This paper presents a novel approach to building ensembles of time series models within the framework of empirical risk space. By conducting an in-depth analysis of the errors made by individual experts, particularly in relation to specific features of the data, the proposed method effectively optimizes expert weights through a sophisticated aggregation algorithm. This approach not only incorporates the concept of expert specialization but also meticulously considers the feature- specific manifestations of errors to accurately identify and exclude experts exhibiting consistent erroneous behavior. Experimental results demonstrate significant improvements in prediction accuracy when compared to traditional ensemble methods. These findings contribute to the advancement of ensemble modeling techniques and underscore the critical importance of feature-specific error analysis in the construction of robust time series ensembles
Библиографическая ссылка: Litvinenko D. , Berikov V.
Building an Ensemble of Time Series Models Using Empirical Risk Space
В сборнике Proceedings 2024 International Russian Automation Conference (RusAutoCon) Sochi, Russia September 8-14, 2024. – IEEE., 2024. – C.751-756. – ISBN 979-8-3503-4981-8. DOI: 10.1109/rusautocon61949.2024.10694116 Scopus OpenAlex
Даты:
Поступила в редакцию: 13 сент. 2024 г.
Опубликована в печати: 4 окт. 2024 г.
Опубликована online: 4 окт. 2024 г.
Идентификаторы БД:
Scopus: 2-s2.0-85208267627
OpenAlex: W4403125514
Цитирование в БД: Пока нет цитирований
Альметрики: