Machine Learning Algorithms Based on Time Series Pre-Clustering for Nocturnal Glucose Prediction in People with Type 1 Diabetes Научная публикация
Журнал |
Diagnostics
ISSN: 2075-4418 |
||||
---|---|---|---|---|---|
Вых. Данные | Год: 2024, Том: 14, Номер: 21, Номер статьи : 2427, Страниц : 11 DOI: 10.3390/diagnostics14212427 | ||||
Ключевые слова | continuous glucose monitoring; glucose prediction; nocturnal hypoglycemia; cluster analysis; machine learning; random forest; gradient boosting trees | ||||
Авторы |
|
||||
Организации |
|
Информация о финансировании (1)
1 | Российский научный фонд | 20-15-00057 |
Реферат:
Background: Machine learning offers new options for glucose prediction and real-time glucose management. The aim of this study was to develop a machine learning-based algorithm that takes into account glucose dynamics patterns for predicting nocturnal glucose in individuals with type 1 diabetes. Methods: To identify glucose patterns, we applied a hierarchical clustering algorithm to real-time continuous glucose monitoring data obtained from 570 adult patients. Machine learning algorithms with or without pre-clustering were used for modeling. Results: Eight clusters without nocturnal hypoglycemia and six clusters with at least one low-glucose episode were identified by the cluster analysis. When forecasting time series without hypoglycemia with a prediction horizon (PH) of 15 or 30 min, gradient boosting trees (GBTs) with pre-clustering and random forest (RF) with pre-clustering outperformed algorithms based on medoids of time series clusters, the Holt model, and GBTs without pre-clustering. When forecasting time series with low-glucose episodes, a model based on the pre-clustering and GBTs provided the highest predictive accuracy at PH = 15 min, and a model based on RF with pre-clustering was the best at PH = 30 min. Conclusions: The results indicate that the clustering of glucose dynamics can enhance the efficacy of machine learning algorithms used for glucose prediction
Библиографическая ссылка:
Kladov D.E.
, Berikov V.B.
, Semenova J.F.
, Klimontov V.V.
Machine Learning Algorithms Based on Time Series Pre-Clustering for Nocturnal Glucose Prediction in People with Type 1 Diabetes
Diagnostics. 2024. V.14. N21. 2427 :1-11. DOI: 10.3390/diagnostics14212427 WOS Scopus РИНЦ OpenAlex
Machine Learning Algorithms Based on Time Series Pre-Clustering for Nocturnal Glucose Prediction in People with Type 1 Diabetes
Diagnostics. 2024. V.14. N21. 2427 :1-11. DOI: 10.3390/diagnostics14212427 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: | 28 сент. 2024 г. |
Принята к публикации: | 26 окт. 2024 г. |
Опубликована в печати: | 30 окт. 2024 г. |
Опубликована online: | 30 окт. 2024 г. |
Идентификаторы БД:
Web of science: | WOS:001351302300001 |
Scopus: | 2-s2.0-85208368136 |
РИНЦ: | 74299805 |
OpenAlex: | W4403945169 |
Цитирование в БД:
БД | Цитирований |
---|---|
OpenAlex | 1 |