Sciact
  • EN
  • RU

Machine Learning Algorithms Based on Time Series Pre-Clustering for Nocturnal Glucose Prediction in People with Type 1 Diabetes Научная публикация

Журнал Diagnostics
ISSN: 2075-4418
Вых. Данные Год: 2024, Том: 14, Номер: 21, Номер статьи : 2427, Страниц : 11 DOI: 10.3390/diagnostics14212427
Ключевые слова continuous glucose monitoring; glucose prediction; nocturnal hypoglycemia; cluster analysis; machine learning; random forest; gradient boosting trees
Авторы Kladov Danil E. 1,2 , Berikov Vladimir B. 1,2 , Semenova Julia F. 2 , Klimontov Vadim V. 2
Организации
1 Laboratory of Data Analysis, Sobolev Institute of Mathematics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
2 Laboratory of Endocrinology, Research Institute of Clinical and Experimental Lymphology, Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL—Branch of IC&G SB RAS), 630060 Novosibirsk, Russia

Информация о финансировании (1)

1 Российский научный фонд 20-15-00057

Реферат: Background: Machine learning offers new options for glucose prediction and real-time glucose management. The aim of this study was to develop a machine learning-based algorithm that takes into account glucose dynamics patterns for predicting nocturnal glucose in individuals with type 1 diabetes. Methods: To identify glucose patterns, we applied a hierarchical clustering algorithm to real-time continuous glucose monitoring data obtained from 570 adult patients. Machine learning algorithms with or without pre-clustering were used for modeling. Results: Eight clusters without nocturnal hypoglycemia and six clusters with at least one low-glucose episode were identified by the cluster analysis. When forecasting time series without hypoglycemia with a prediction horizon (PH) of 15 or 30 min, gradient boosting trees (GBTs) with pre-clustering and random forest (RF) with pre-clustering outperformed algorithms based on medoids of time series clusters, the Holt model, and GBTs without pre-clustering. When forecasting time series with low-glucose episodes, a model based on the pre-clustering and GBTs provided the highest predictive accuracy at PH = 15 min, and a model based on RF with pre-clustering was the best at PH = 30 min. Conclusions: The results indicate that the clustering of glucose dynamics can enhance the efficacy of machine learning algorithms used for glucose prediction
Библиографическая ссылка: Kladov D.E. , Berikov V.B. , Semenova J.F. , Klimontov V.V.
Machine Learning Algorithms Based on Time Series Pre-Clustering for Nocturnal Glucose Prediction in People with Type 1 Diabetes
Diagnostics. 2024. V.14. N21. 2427 :1-11. DOI: 10.3390/diagnostics14212427 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: 28 сент. 2024 г.
Принята к публикации: 26 окт. 2024 г.
Опубликована в печати: 30 окт. 2024 г.
Опубликована online: 30 окт. 2024 г.
Идентификаторы БД:
Web of science: WOS:001351302300001
Scopus: 2-s2.0-85208368136
РИНЦ: 74299805
OpenAlex: W4403945169
Цитирование в БД:
БД Цитирований
OpenAlex 1
Альметрики: