Sciact
  • EN
  • RU

An embedded flexible polyhedron with nonconstant dihedral angles Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2024, Volume: 65, Number: 6, Pages: 1259-1280 Pages count : 22 DOI: 10.1134/S003744662406003X
Tags Euclidean 3-space, flexible polyhedron, dihedral angle, short diagonal, segment-triangle intersection algorithm
Authors Alexandrov V.A. 1,2 , Volokitin E.P. 1,2
Affiliations
1 Sobolev Institute of Mathematics
2 Novosibirsk State University

Funding (2)

1 Sobolev Institute of Mathematics FWNF-2022-0006
2 Sobolev Institute of Mathematics FWNF-2022-0005

Abstract: We construct some sphere-homeomorphic flexible self-intersection-free polyhedron in Euclidean 3-space whose all dihedral angles change during some flex. The polyhedron has 26 vertices, 72 edges, and 48 faces. To study the properties of the polyhedron, we use traditional geometric constructions and reasoning as well as symbolic calculations in the Wolfram Mathematica software system.
Cite: Alexandrov V.A. , Volokitin E.P.
An embedded flexible polyhedron with nonconstant dihedral angles
Siberian Mathematical Journal. 2024. V.65. N6. P.1259-1280. DOI: 10.1134/S003744662406003X WOS Scopus РИНЦ OpenAlex
Original: Александров В.А. , Волокитин Е.П.
Вложенный многогранник, допускающий изгибание, при котором все его двугранные углы изменяются
Сибирский математический журнал. 2024. Т.65. №6. С.1076-1101. DOI: 10.33048/smzh.2024.65.603 РИНЦ
Dates:
Submitted: Jun 19, 2024
Accepted: Oct 23, 2024
Published print: Nov 19, 2024
Published online: Nov 19, 2024
Identifiers:
Web of science: WOS:001360196500016
Scopus: 2-s2.0-85209387676
Elibrary: 75060307
OpenAlex: W4404500233
Citing: Пока нет цитирований
Altmetrics: