Sciact
  • EN
  • RU

Extremals of the Induced Sub-Lorentz Structure on the Gödel Universe Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2024, Volume: 65, Number: 6, Pages: 1292-1304 Pages count : 13 DOI: 10.1134/s0037446624060053
Tags Gödel universe, induced left-invariant sub-Lorentz structure, isotropic extremal, Lie algebra, Lie group, orthonormal basis, timelike extremal
Authors Berestovskii V.N. 1
Affiliations
1 Sobolev Institute of Mathematics

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0006

Abstract: We study the Gödel universe as the Lie group with the induced left-invariant sub-Lorentz structure defined by some proper subspace of the Lie algebra that generates it. We find the expressions for timelike and isotropic extremals in elementary functions by methods of geometric optimal control. Also, we prove that these extremals are not closed but as a rule not complete, having proper open subintervals of the real line as maximal connected domains.
Cite: Berestovskii V.N.
Extremals of the Induced Sub-Lorentz Structure on the Gödel Universe
Siberian Mathematical Journal. 2024. V.65. N6. P.1292-1304. DOI: 10.1134/s0037446624060053 WOS Scopus РИНЦ OpenAlex
Original: Берестовский В.Н.
Экстремали индуцированной сублоренцевой структуры на Вселенной Гёделя
Сибирский математический журнал. 2024. Т.65. №6. С.1115-1127. DOI: 10.33048/smzh.2024.65.605 РИНЦ
Dates:
Submitted: May 16, 2024
Accepted: Aug 20, 2024
Published print: Nov 19, 2024
Published online: Nov 19, 2024
Identifiers:
Web of science: WOS:001360196500019
Scopus: 2-s2.0-85209347041
Elibrary: 75060309
OpenAlex: W4404500210
Citing: Пока нет цитирований
Altmetrics: