Sciact
  • EN
  • RU

Fundamental Properties of Fractional Powers of Unbounded Operators in Banach Spaces Full article

Journal Siberian Advances in Mathematics
ISSN: 1055-1344 , E-ISSN: 1934-8126
Output data Year: 2024, Volume: 34, Number: 4, Pages: 261-265 Pages count : 5 DOI: 10.1134/S1055134424040023
Tags Abstract Mathieu-Hill equations, reduction to standard form, operator exponentials, fractional powers, parametric resonance
Authors Belonosov V.S. 1,2 , Shvets A.G. 2
Affiliations
1 Sobolev Institute of Mathematics, Novosibirsk, 630090, Russia
2 Novosibirsk State University, Novosibirsk, 630090, Russia

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0008

Abstract: Abstract: We extend the classical theory of operator-valued analytic functions to a wide class of linear unbounded operators defined in Banach spaces on sets that need not be everywhere dense. We also describe properties of fractional powers of these operators. The class under considerationincludes the Sturm–Liouville differential operator with homogeneous Dirichlet boundaryconditions that acts in a space of continuous functions on a bounded interval.
Cite: Belonosov V.S. , Shvets A.G.
Fundamental Properties of Fractional Powers of Unbounded Operators in Banach Spaces
Siberian Advances in Mathematics. 2024. V.34. N4. P.261-265. DOI: 10.1134/S1055134424040023 Scopus РИНЦ OpenAlex
Original: Белоносов В.С. , Швец А.Г.
Фундаментальные свойства дробных степеней неограниченных операторов в банаховых пространствах
Математические труды. 2024. Т.27. №3. С.20-29. DOI: 10.25205/1560-750X-2024-27-3-20-29
Dates:
Submitted: Sep 18, 2024
Accepted: Oct 31, 2024
Published print: Dec 25, 2024
Published online: Jan 14, 2025
Identifiers:
Scopus: 2-s2.0-85217413886
Elibrary: 79610851
OpenAlex: W4406373569
Citing: Пока нет цитирований
Altmetrics: