Sciact
  • EN
  • RU

On the existence of viscosity of the evolution p(x)-laplace equation with one spatial variable Full article

Journal Journal of Applied and Industrial Mathematics
ISSN: 1990-4789 , E-ISSN: 1990-4797
Output data Year: 2024, Volume: 18, Number: 4, Pages: 886–904 Pages count : 19 DOI: 10.1134/S1990478924040215
Tags p(x)-Laplace equation, Bernstein–Nagumo type condition, viscosity solution, a priori estimates
Authors Tersenov Ar.S. 1
Affiliations
1 Sobolev Institute of Mathematics

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0008

Abstract: In this paper, we study the first boundary value problem for the p(x)-Laplacian with one spatial variable in the presence of gradient terms that do not satisfy the Bernstein–Nagumo condition. A class of gradient nonlinearities is defined for which the existence of a viscosity solution that is Lipschitz continuous in x and H¨older continuous in t is proven
Cite: Tersenov A.S.
On the existence of viscosity of the evolution p(x)-laplace equation with one spatial variable
Journal of Applied and Industrial Mathematics. 2024. V.18. N4. P.886–904. DOI: 10.1134/S1990478924040215 Scopus РИНЦ OpenAlex
Original: Терсенов А.С.
О существовании вязких решений эволюционного уравнения с p(x)-лапласианом с одной пространственной переменной
Сибирский журнал индустриальной математики. 2024. Т.27. №4. С.130–151. DOI: 10.33048/SIBJIM.2024.27.409 РИНЦ
Dates:
Submitted: Nov 6, 2023
Accepted: Nov 6, 2024
Published print: Dec 25, 2024
Published online: Jul 11, 2025
Identifiers:
Scopus: 2-s2.0-105010533903
Elibrary: 82621670
OpenAlex: W4412194753
Citing: Пока нет цитирований
Altmetrics: