On the existence of viscosity of the evolution p(x)-laplace equation with one spatial variable Full article
Journal |
Journal of Applied and Industrial Mathematics
ISSN: 1990-4789 , E-ISSN: 1990-4797 |
||
---|---|---|---|
Output data | Year: 2024, Volume: 18, Number: 4, Pages: 886–904 Pages count : 19 DOI: 10.1134/S1990478924040215 | ||
Tags | p(x)-Laplace equation, Bernstein–Nagumo type condition, viscosity solution, a priori estimates | ||
Authors |
|
||
Affiliations |
|
Funding (1)
1 | Sobolev Institute of Mathematics | FWNF-2022-0008 |
Abstract:
In this paper, we study the first boundary value problem for the p(x)-Laplacian with one spatial variable in the presence of gradient terms that do not satisfy the Bernstein–Nagumo condition. A class of gradient nonlinearities is defined for which the existence of a viscosity solution that is Lipschitz continuous in x and H¨older continuous in t is proven
Cite:
Tersenov A.S.
On the existence of viscosity of the evolution p(x)-laplace equation with one spatial variable
Journal of Applied and Industrial Mathematics. 2024. V.18. N4. P.886–904. DOI: 10.1134/S1990478924040215 Scopus РИНЦ OpenAlex
On the existence of viscosity of the evolution p(x)-laplace equation with one spatial variable
Journal of Applied and Industrial Mathematics. 2024. V.18. N4. P.886–904. DOI: 10.1134/S1990478924040215 Scopus РИНЦ OpenAlex
Original:
Терсенов А.С.
О существовании вязких решений эволюционного уравнения с p(x)-лапласианом с одной пространственной переменной
Сибирский журнал индустриальной математики. 2024. Т.27. №4. С.130–151. DOI: 10.33048/SIBJIM.2024.27.409 РИНЦ
О существовании вязких решений эволюционного уравнения с p(x)-лапласианом с одной пространственной переменной
Сибирский журнал индустриальной математики. 2024. Т.27. №4. С.130–151. DOI: 10.33048/SIBJIM.2024.27.409 РИНЦ
Dates:
Submitted: | Nov 6, 2023 |
Accepted: | Nov 6, 2024 |
Published print: | Dec 25, 2024 |
Published online: | Jul 11, 2025 |
Identifiers:
Scopus: | 2-s2.0-105010533903 |
Elibrary: | 82621670 |
OpenAlex: | W4412194753 |
Citing:
Пока нет цитирований