Functional properties of limits of Sobolev homeomorphisms with integrable distortion Full article
Journal |
Journal of Mathematical Sciences (United States)
ISSN: 1072-3374 , E-ISSN: 1573-8795 |
||
---|---|---|---|
Output data | Year: 2024, Volume: 286, Number: 3, December, Pages: 322-342 Pages count : 21 DOI: 10.1007/s10958-024-07508-z | ||
Tags | class of Sobolev mappings, Carnot group, mapping with finite distortion, external operator distortion function, limit property of Sobolev mappings, N^{-1}-Luzin property, injectivity almost everywhere | ||
Authors |
|
||
Affiliations |
|
Funding (1)
1 | Russian Science Foundation | 23-21-00359 |
Abstract:
The functional and geometric properties of limits of homeomorphisms with integrable distortion of domains in Carnot groups are studied. The homeomorphisms belong to Sobolev classes.Conditions are obtained under which the limits of sequences of such homeomorphisms also belong tothe Sobolev class, have a finite distortion, and have the N^{−1}-Luzin property. In the case of Carnot groups of H-type, sufficient conditions are obtained that are imposed on domains and a sequence of homeomorphisms under which the limit mapping is injective almost everywhere. These results play a key role in finding extremal solutions to problems in the mathematical theory of elasticity on H-type Carnot groups, which are the subject of subsequent works by the authors.
Cite:
Vodopyanov S.K.
, Pavlov S.V.
Functional properties of limits of Sobolev homeomorphisms with integrable distortion
Journal of Mathematical Sciences (United States). 2024. V.286. N3, December. P.322-342. DOI: 10.1007/s10958-024-07508-z Scopus РИНЦ OpenAlex
Functional properties of limits of Sobolev homeomorphisms with integrable distortion
Journal of Mathematical Sciences (United States). 2024. V.286. N3, December. P.322-342. DOI: 10.1007/s10958-024-07508-z Scopus РИНЦ OpenAlex
Original:
Водопьянов С.К.
, Павлов С.В.
Функциональные свойства пределов соболевских гомеоморфизмов с интегрируемым искажением
Современная математика. Фундаментальные направления. 2024. Т.70. №2. С.215-236. DOI: 10.22363/2413-3639-2024-70-2-215-236 РИНЦ
Функциональные свойства пределов соболевских гомеоморфизмов с интегрируемым искажением
Современная математика. Фундаментальные направления. 2024. Т.70. №2. С.215-236. DOI: 10.22363/2413-3639-2024-70-2-215-236 РИНЦ
Dates:
Published print: | Dec 21, 2024 |
Published online: | Dec 21, 2024 |
Identifiers:
Scopus: | 2-s2.0-85212880032 |
Elibrary: | 80115321 |
OpenAlex: | W4405660240 |
Citing:
DB | Citing |
---|---|
Scopus | 1 |