Sciact
  • EN
  • RU

Functional properties of limits of Sobolev homeomorphisms with integrable distortion Full article

Journal Journal of Mathematical Sciences (United States)
ISSN: 1072-3374 , E-ISSN: 1573-8795
Output data Year: 2024, Volume: 286, Number: 3, December, Pages: 322-342 Pages count : 21 DOI: 10.1007/s10958-024-07508-z
Tags class of Sobolev mappings, Carnot group, mapping with finite distortion, external operator distortion function, limit property of Sobolev mappings, N^{-1}-Luzin property, injectivity almost everywhere
Authors Vodopyanov S.K. 1 , Pavlov S.V. 1
Affiliations
1 Novosibirsk State University, Novosibirsk, Russia

Funding (1)

1 Russian Science Foundation 23-21-00359

Abstract: The functional and geometric properties of limits of homeomorphisms with integrable distortion of domains in Carnot groups are studied. The homeomorphisms belong to Sobolev classes.Conditions are obtained under which the limits of sequences of such homeomorphisms also belong tothe Sobolev class, have a finite distortion, and have the N^{−1}-Luzin property. In the case of Carnot groups of H-type, sufficient conditions are obtained that are imposed on domains and a sequence of homeomorphisms under which the limit mapping is injective almost everywhere. These results play a key role in finding extremal solutions to problems in the mathematical theory of elasticity on H-type Carnot groups, which are the subject of subsequent works by the authors.
Cite: Vodopyanov S.K. , Pavlov S.V.
Functional properties of limits of Sobolev homeomorphisms with integrable distortion
Journal of Mathematical Sciences (United States). 2024. V.286. N3, December. P.322-342. DOI: 10.1007/s10958-024-07508-z Scopus РИНЦ OpenAlex
Original: Водопьянов С.К. , Павлов С.В.
Функциональные свойства пределов соболевских гомеоморфизмов с интегрируемым искажением
Современная математика. Фундаментальные направления. 2024. Т.70. №2. С.215-236. DOI: 10.22363/2413-3639-2024-70-2-215-236 РИНЦ
Dates:
Published print: Dec 21, 2024
Published online: Dec 21, 2024
Identifiers:
Scopus: 2-s2.0-85212880032
Elibrary: 80115321
OpenAlex: W4405660240
Citing:
DB Citing
Scopus 1
Altmetrics: