Sciact
  • EN
  • RU

Functional properties of limits of Sobolev homeomorphisms with integrable distortion Научная публикация

Журнал Journal of Mathematical Sciences (United States)
ISSN: 1072-3374 , E-ISSN: 1573-8795
Вых. Данные Год: 2024, Том: 286, Номер: 3, December, Страницы: 322-342 Страниц : 21 DOI: 10.1007/s10958-024-07508-z
Ключевые слова class of Sobolev mappings, Carnot group, mapping with finite distortion, external operator distortion function, limit property of Sobolev mappings, N^{-1}-Luzin property, injectivity almost everywhere
Авторы Vodopyanov S.K. 1 , Pavlov S.V. 1
Организации
1 Novosibirsk State University, Novosibirsk, Russia

Информация о финансировании (1)

1 Российский научный фонд 23-21-00359

Реферат: The functional and geometric properties of limits of homeomorphisms with integrable distortion of domains in Carnot groups are studied. The homeomorphisms belong to Sobolev classes.Conditions are obtained under which the limits of sequences of such homeomorphisms also belong tothe Sobolev class, have a finite distortion, and have the N^{−1}-Luzin property. In the case of Carnot groups of H-type, sufficient conditions are obtained that are imposed on domains and a sequence of homeomorphisms under which the limit mapping is injective almost everywhere. These results play a key role in finding extremal solutions to problems in the mathematical theory of elasticity on H-type Carnot groups, which are the subject of subsequent works by the authors.
Библиографическая ссылка: Vodopyanov S.K. , Pavlov S.V.
Functional properties of limits of Sobolev homeomorphisms with integrable distortion
Journal of Mathematical Sciences (United States). 2024. V.286. N3, December. P.322-342. DOI: 10.1007/s10958-024-07508-z Scopus РИНЦ OpenAlex
Оригинальная: Водопьянов С.К. , Павлов С.В.
Функциональные свойства пределов соболевских гомеоморфизмов с интегрируемым искажением
Современная математика. Фундаментальные направления. 2024. Т.70. №2. С.215-236. DOI: 10.22363/2413-3639-2024-70-2-215-236 РИНЦ
Даты:
Опубликована в печати: 21 дек. 2024 г.
Опубликована online: 21 дек. 2024 г.
Идентификаторы БД:
Scopus: 2-s2.0-85212880032
РИНЦ: 80115321
OpenAlex: W4405660240
Цитирование в БД:
БД Цитирований
Scopus 1
Альметрики: