Finite-gap potentials and integrable geodesic equations on a 2-surface Full article
Journal |
Proceedings of the Steklov Institute of Mathematics
ISSN: 0081-5438 , E-ISSN: 1531-8605 |
||||
---|---|---|---|---|---|
Output data | Year: 2024, Volume: 327, Number: 1, Pages: 1-11 Pages count : 11 DOI: 10.1134/S0081543824060014 | ||||
Tags | Schrödinger equation, finite-gap potential, baker–akhiezer function, metrizability, geodesics, integrability | ||||
Authors |
|
||||
Affiliations |
|
Funding (1)
1 | Russian Science Foundation | 24-11-00281 |
Abstract:
We show that the one-dimensional Schrödinger equation can be viewed as the geodesic equation of a certain metric on a 2-surface. In the case of the Schrödinger equation with a finite-gap potential, the metric and geodesics are explicitly found in terms of the Baker–Akhiezer function.
Cite:
Agapov S.V.
, Mironov A.E.
Finite-gap potentials and integrable geodesic equations on a 2-surface
Proceedings of the Steklov Institute of Mathematics. 2024. V.327. N1. P.1-11. DOI: 10.1134/S0081543824060014 РИНЦ
Finite-gap potentials and integrable geodesic equations on a 2-surface
Proceedings of the Steklov Institute of Mathematics. 2024. V.327. N1. P.1-11. DOI: 10.1134/S0081543824060014 РИНЦ
Original:
Agapov S.V.
, Mironov A.E.
Конечнозонные потенциалы и интегрируемые уравнения геодезических на двумерной поверхности
Труды Математического института имени В.А. Стеклова. 2024. Т.327. С.7–17. DOI: 10.4213/tm4435 РИНЦ OpenAlex
Конечнозонные потенциалы и интегрируемые уравнения геодезических на двумерной поверхности
Труды Математического института имени В.А. Стеклова. 2024. Т.327. С.7–17. DOI: 10.4213/tm4435 РИНЦ OpenAlex
Dates:
Submitted: | Jun 6, 2024 |
Accepted: | Aug 13, 2024 |
Published print: | Apr 1, 2025 |
Published online: | Apr 1, 2025 |
Identifiers:
Elibrary: | 80615963 |
Citing:
Пока нет цитирований