Sciact
  • EN
  • RU

Finite-gap potentials and integrable geodesic equations on a 2-surface Научная публикация

Журнал Proceedings of the Steklov Institute of Mathematics
ISSN: 0081-5438 , E-ISSN: 1531-8605
Вых. Данные Год: 2024, Том: 327, Номер: 1, Страницы: 1-11 Страниц : 11 DOI: 10.1134/S0081543824060014
Ключевые слова Schrödinger equation, finite-gap potential, baker–akhiezer function, metrizability, geodesics, integrability
Авторы Agapov S.V. 1,2 , Mironov A.E. 1,2
Организации
1 Novosibirsk State University, Novosibirsk, Russia
2 Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia

Информация о финансировании (1)

1 Российский научный фонд 24-11-00281

Реферат: We show that the one-dimensional Schrödinger equation can be viewed as the geodesic equation of a certain metric on a 2-surface. In the case of the Schrödinger equation with a finite-gap potential, the metric and geodesics are explicitly found in terms of the Baker–Akhiezer function.
Библиографическая ссылка: Agapov S.V. , Mironov A.E.
Finite-gap potentials and integrable geodesic equations on a 2-surface
Proceedings of the Steklov Institute of Mathematics. 2024. V.327. N1. P.1-11. DOI: 10.1134/S0081543824060014 WOS Scopus РИНЦ OpenAlex
Оригинальная: Agapov S.V. , Mironov A.E.
Конечнозонные потенциалы и интегрируемые уравнения геодезических на двумерной поверхности
Труды Математического института имени В.А. Стеклова. 2024. Т.327. С.7–17. DOI: 10.4213/tm4435 РИНЦ OpenAlex
Даты:
Поступила в редакцию: 6 июн. 2024 г.
Принята к публикации: 13 авг. 2024 г.
Опубликована в печати: 1 апр. 2025 г.
Опубликована online: 1 апр. 2025 г.
Идентификаторы БД:
Web of science: WOS:001457341300012
Scopus: 2-s2.0-105001525773
РИНЦ: 80615963
OpenAlex: W4409048650
Цитирование в БД: Пока нет цитирований
Альметрики: