Sciact
  • EN
  • RU

Removable Singularities for Quasiregular Mappings Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2025, Volume: 66, Number: 3, Pages: 629–640 Pages count : DOI: 10.1134/S0037446625030036
Tags quasiconformal mapping, quasiregular mapping, weakly quasisymmetric mapping, continuous open discrete mapping, modulus of a path family, condenser capacity
Authors Асеев В.В. 1
Affiliations
1 Sobolev Institute of Mathematics, Novosibirsk, Russia

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0005

Abstract: Given a continuous open finite-to-one mapping f of a domain G including a closed set E, for each natural k we consider the set E(k) (possibly empty) of all points in E at which f attains a value with multiplicity k over G. Suppose that each point of E(k) has a neighborhood where the restriction of f to E(k) is injective, and its inverse mapping is weakly (h, H)-quasisymmetric. If, moreover, f is quasiregular outside E, then it is quasiregular on the entire domain G. This theorem generalizes the sufficient condition for the removability of closed sets in the class of quasiconformal mappings obtained by Väisälä in 1990.
Cite: Асеев В.В.
Removable Singularities for Quasiregular Mappings
Siberian Mathematical Journal. 2025. V.66. N3. P.629–640. DOI: 10.1134/S0037446625030036 Scopus РИНЦ
Original: Асеев В.В.
Об устранимых особенностях для квазирегулярных отображений
Сибирский математический журнал. 2025. Т.66. №3. С.363-377. DOI: 10.33048/smzh.2025.66.303
Dates:
Submitted: Oct 21, 2024
Accepted: Apr 25, 2025
Published print: Jun 2, 2025
Published online: Jun 2, 2025
Identifiers:
Scopus: 2-s2.0-105007098103
Elibrary: 82395829
Citing: Пока нет цитирований
Altmetrics: