Sciact
  • EN
  • RU

Rational Integrals of Natural Systems in a Magnetic Field Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2025, Volume: 66, Number: 3, Pages: 609–617 Pages count : DOI: 10.1134/S0037446625030012
Tags natural system, potential, magnetic field, integrability, first integral rational in momenta, Hopf equation
Authors Agapov S.V. 1,2 , Solov’ev D.V. 1
Affiliations
1 Novosibirsk State University, Novosibirsk, Russia
2 Sobolev Institute of Mathematics, Novosibirsk, Russia

Funding (1)

1 Russian Science Foundation 24-11-00281

Abstract: We study natural mechanical systems on the two-dimensional plane in a magnetic field that admit an additional first integral which is rational in momenta. In this article, we construct new integrable examples of such systems and also study the problem of existence of rational integrals in the absence of a magnetic field.
Cite: Agapov S.V. , Solov’ev D.V.
Rational Integrals of Natural Systems in a Magnetic Field
Siberian Mathematical Journal. 2025. V.66. N3. P.609–617. DOI: 10.1134/S0037446625030012 WOS Scopus РИНЦ
Original: Агапов С.В. , Соловьев Д.В.
О рациональных интегралах натуральных систем в магнитном поле
Сибирский математический журнал. 2025. Т.66. №3. С.339-348. DOI: 10.33048/smzh.2025.66.301
Dates:
Submitted: Oct 8, 2024
Accepted: Apr 25, 2025
Published print: Jun 2, 2025
Published online: Jun 2, 2025
Identifiers:
Web of science: WOS:001500903100005
Scopus: 2-s2.0-105007077094
Elibrary: 82395827
Citing: Пока нет цитирований
Altmetrics: