Sciact
  • EN
  • RU

Recognizability of the Groups PSp8(7m) by the Set of Element Orders Научная публикация

Журнал Mathematical Notes
ISSN: 0001-4346 , E-ISSN: 1573-8876
Вых. Данные Год: 2025, Том: 117, Номер: 3-4, Страницы: 538-546 Страниц : 9 DOI: 10.1134/s0001434625030198
Ключевые слова orders of elements, simple group, symplectic group, orthogonal group, representations in defining characteristic.
Авторы Grechkoseeva M.A. 1
Организации
1 Sobolev Institute of Mathematics

Реферат: The set of orders of the elements of a finite group G is called the spectrum of G. A group G is said to be unrecognizable by spectrum if there are infinitely many pairwise nonisomorphic finite groups that have the same spectrum as G. There is a conjecture that every finite simple classical group unrecognizable by spectrum is contained in the following list: PSL3(3), PSU3(q), PSU5(2), PSp4(q), PSp8(q), and PΩ9(q). The only groups in this list that were not known to be unrecognizable by spectrum are PSp8(7m). In the present paper, it is shown that PSp8(7m) are not unrecognizable and, moreover, any of these groups is uniquely (up to isomorphism) determined by its spectrum in the class of all finite groups.
Библиографическая ссылка: Grechkoseeva M.A.
Recognizability of the Groups PSp8(7m) by the Set of Element Orders
Mathematical Notes. 2025. V.117. N3-4. P.538-546. DOI: 10.1134/s0001434625030198 Scopus OpenAlex
Оригинальная: Гречкосеева M.A.
Распознаваемость групп PSp8(7m) по множеству порядков элементов
Математические заметки. 2025. Т.117. №4. С.494-504. DOI: 10.4213/mzm14506 РИНЦ OpenAlex
Даты:
Поступила в редакцию: 10 июн. 2024 г.
Принята к публикации: 10 сент. 2024 г.
Опубликована в печати: 16 июн. 2025 г.
Опубликована online: 16 июн. 2025 г.
Идентификаторы БД:
Scopus: 2-s2.0-105008202704
OpenAlex: W4411339411
Цитирование в БД: Пока нет цитирований
Альметрики: