The Strong π-Sylow Theorem for Finite Simple Groups of Lie Type of Rank 1 Full article
Journal |
Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260 |
||||
---|---|---|---|---|---|
Output data | Year: 2025, Volume: 66, Number: 4, Pages: 1049-1062 Pages count : 14 DOI: 10.1134/s0037446625040159 | ||||
Tags | π-Sylow theorem, strong π-Sylow theorem, groups of Lie type | ||||
Authors |
|
||||
Affiliations |
|
Funding (1)
1 | Russian Science Foundation | 24-21-00163 |
Abstract:
Let π be a set of primes. A finite group is said to be a π-group if all prime divisors of its order belong to π. Following Wielandt, we say that for a finite group G the π-Sylow theorem holds if all maximal π-subgroups of G are conjugate; if the π-Sylow theorem holds for every subgroup of G, then G is said to satisfy the strong π-Sylow theorem. The question of which finite nonabelian simple groups satisfy the strong π-Sylow theorem was posed by Wielandt in 1979. This paper completes an arithmetic description of the groups of Lie type of rank 1 that satisfy the strong π-Sylow theorem
Cite:
Shepelev V.D.
The Strong π-Sylow Theorem for Finite Simple Groups of Lie Type of Rank 1
Siberian Mathematical Journal. 2025. V.66. N4. P.1049-1062. DOI: 10.1134/s0037446625040159 WOS Scopus РИНЦ OpenAlex
The Strong π-Sylow Theorem for Finite Simple Groups of Lie Type of Rank 1
Siberian Mathematical Journal. 2025. V.66. N4. P.1049-1062. DOI: 10.1134/s0037446625040159 WOS Scopus РИНЦ OpenAlex
Original:
Шепелев В.Д.
Сильная π-теорема Силова для простых групп лиева типа ранга 1
Сибирский математический журнал. 2025. Т.66. №4. С.755–771. DOI: 10.33048/smzh.2025.66.415 РИНЦ MathNet
Сильная π-теорема Силова для простых групп лиева типа ранга 1
Сибирский математический журнал. 2025. Т.66. №4. С.755–771. DOI: 10.33048/smzh.2025.66.415 РИНЦ MathNet
Dates:
Submitted: | Feb 20, 2025 |
Accepted: | May 26, 2025 |
Published print: | Jul 23, 2025 |
Published online: | Jul 23, 2025 |
Identifiers:
Web of science: | WOS:001535187000015 |
Scopus: | 2-s2.0-105011257062 |
Elibrary: | 82650986 |
OpenAlex: | W4412610079 |
Citing:
Пока нет цитирований