Sciact
  • EN
  • RU

Generalizing the Bierbrauer–Friedman bound for orthogonal arrays Научная публикация

Журнал Designs, Codes and Cryptography
ISSN: 0925-1022 , E-ISSN: 1573-7586
Вых. Данные Год: 2025, DOI: 10.1007/s10623-025-01711-y
Ключевые слова Orthogonal array, Algebraic t-design, Completely regular code, Equitable partition, Intriguing set, Hamming graph, Bierbrauer–Friedman bound, Additive codes
Авторы Krotov D.S. 1,2 , Özbudak F. 3 , Potapov V.N. 3
Организации
1 School of Mathematical Sciences, Hebei Normal University, Hebei Key Laboratory of Computational Mathematics and Applications, Shijiazhuang, 050024, People’s Republic of China
2 Sobolev Institute of Mathematics, Novosibirsk, 630090, Russia
3 Faculty of Engineering and Natural Science, Sabancı University, Istanbul, Turkey

Информация о финансировании (1)

1 Институт математики им. С.Л. Соболева СО РАН FWNF-2022-0017

Реферат: We characterize mixed-level orthogonal arrays in terms of algebraic designs in a special multigraph. We prove a mixed-level analog of the Bierbrauer–Friedman (BF) bound for pure-level orthogonal arrays and show that arrays attaining it are radius-1 completely regular codes (equivalently, intriguing sets, equitable 2-partitions, perfect 2-colorings) in the corresponding multigraph. For the case when the numbers of levels are powers of the same prime number, we characterize, in terms of multispreads, additive mixed-level orthogonal arrays attaining the BF bound. For pure-level orthogonal arrays, we consider versions of the BF bound obtained by replacing the Hamming graph by its polynomial generalization and show that in some cases this gives a new bound.
Библиографическая ссылка: Krotov D.S. , Özbudak F. , Potapov V.N.
Generalizing the Bierbrauer–Friedman bound for orthogonal arrays
Designs, Codes and Cryptography. 2025. DOI: 10.1007/s10623-025-01711-y WOS Scopus OpenAlex
Даты:
Поступила в редакцию: 31 дек. 2024 г.
Принята к публикации: 2 авг. 2025 г.
Опубликована online: 13 авг. 2025 г.
Идентификаторы БД:
Web of science: WOS:001552613400001
Scopus: 2-s2.0-105013284177
OpenAlex: W4413128282
Цитирование в БД: Пока нет цитирований
Альметрики: