Clustering-Based Graph Neural Network in a Weakly Supervised Regression Problem Научная публикация
Конференция |
XXIV International conference “Mathematical Optimization Theory and Operations Research” 07-11 июл. 2025 , Новосибирск |
||||
---|---|---|---|---|---|
Сборник | Mathematical Optimization Theory and Operations Research : 24th International Conference, MOTOR 2025, Novosibirsk, Russia, July 7–11, 2025, Proceedings Сборник, Springer Nature. Switzerland.2025. 405 c. ISBN 978-3-031-97077-1. |
||||
Журнал |
Lecture Notes in Computer Science
ISSN: 0302-9743 , E-ISSN: 1611-3349 |
||||
Вых. Данные | Год: 2025, Том: 15681, Страницы: 335-347 Страниц : 13 DOI: 10.1007/978-3-031-97077-1_23 | ||||
Ключевые слова | Weakly supervised regression, Manifold regularization, Graph convolutional neural network, Cluster ensemble, Truncated loss | ||||
Авторы |
|
||||
Организации |
|
Информация о финансировании (1)
1 | Российский научный фонд | 24-21-00195 |
Реферат:
This paper presents a novel Clustering-based Graph Neural Network algorithm for weakly supervised regression. The proposed approach constructs a robust graph representation of the data using a weighted co-association matrix derived from a cluster ensemble, enabling the model to effectively capture complex relationships and reduce the impact of noise and outliers. A graph neural network is then trained on this structure, with manifold regularization via the graph Laplacian allowing the model to effectively utilize both labeled and unlabeled data.
This approach improves stability and enhances robustness to label noise. Additionally, Truncated Loss is employed to mitigate the influence of outliers during training, and a Balanced Batch Sampling algorithm is introduced to ensure effective mini-batch training on the constructed graph.
Numerical experiments on several real-world regression datasets demonstrate that CBGNN outperforms classical supervised, semi-supervised,
and other weakly supervised learning methods, particularly in settings
with significant label noise.
Библиографическая ссылка:
Kalmutskiy K.
, Berikov V.
Clustering-Based Graph Neural Network in a Weakly Supervised Regression Problem
В сборнике Mathematical Optimization Theory and Operations Research : 24th International Conference, MOTOR 2025, Novosibirsk, Russia, July 7–11, 2025, Proceedings. – Springer Nature., 2025. – C.335-347. – ISBN 978-3-031-97077-1. DOI: 10.1007/978-3-031-97077-1_23 Scopus OpenAlex
Clustering-Based Graph Neural Network in a Weakly Supervised Regression Problem
В сборнике Mathematical Optimization Theory and Operations Research : 24th International Conference, MOTOR 2025, Novosibirsk, Russia, July 7–11, 2025, Proceedings. – Springer Nature., 2025. – C.335-347. – ISBN 978-3-031-97077-1. DOI: 10.1007/978-3-031-97077-1_23 Scopus OpenAlex
Даты:
Опубликована в печати: | 7 авг. 2025 г. |
Опубликована online: | 7 авг. 2025 г. |
Идентификаторы БД:
Scopus: | 2-s2.0-105010826054 |
OpenAlex: | W4412044082 |
Цитирование в БД:
Пока нет цитирований