Sciact
  • EN
  • RU

Inverse Problem for a Quasilinear Wave Equation Научная публикация

Журнал Computational Mathematics and Mathematical Physics
ISSN: 0965-5425 , E-ISSN: 1555-6662
Вых. Данные Год: 2025, Том: 65, Номер: 6, Страницы: 1344-1353 Страниц : 10 DOI: 10.1134/s096554252570040x
Ключевые слова nonlinear wave equation, inverse problem, tomography, integral geometry, uniqueness, stability
Авторы Romanov V.G. 1
Организации
1 Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences

Информация о финансировании (1)

1 Институт математики им. С.Л. Соболева СО РАН FWNF-2022-0009

Реферат: A quasilinear hyperbolic equation is considered whose principal part is a purely wave operator and the lower order part consists of two nonlinear terms with coefficients and compactly supported in a ball . We study the direct problem of a plane wave scattered by a heterogeneity localized in and the inverse problem of recovering the coefficients and from solutions of direct problems with a varying incident wave direction. An asymptotic expansion of the solution to the direct problem near the front of the traveling plane wave is presented, based on which the inverse problem is reduced to two linear problems to be solved sequentially. Namely, the problem of determining the coefficient is reduced to a classical X-ray tomography problem, while the problem of determining the coefficient is reduced to a more complicated problem of integral geometry. The last problem, which is new, is to find a function from its integrals with a given weight along straight lines. This problem is investigated, and a uniqueness and stability theorem for its solution is proved.
Библиографическая ссылка: Romanov V.G.
Inverse Problem for a Quasilinear Wave Equation
Computational Mathematics and Mathematical Physics. 2025. V.65. N6. P.1344-1353. DOI: 10.1134/s096554252570040x WOS Scopus РИНЦ OpenAlex
Оригинальная: Романов В.Г.
Обратная задача для квазилинейного волнового уравнения
Журнал вычислительной математики и математической физики. 2025. Т.65. №6. С.961-971. DOI: 10.31857/S0044466925060093 РИНЦ
Даты:
Поступила в редакцию: 28 нояб. 2024 г.
Принята к публикации: 27 мар. 2025 г.
Опубликована в печати: 6 авг. 2025 г.
Опубликована online: 6 авг. 2025 г.
Идентификаторы БД:
Web of science: WOS:001551465700017
Scopus: 2-s2.0-105012775128
РИНЦ: 82714642
OpenAlex: W4413049500
Цитирование в БД: Пока нет цитирований
Альметрики: