Обратная задача для квазилинейного волнового уравнения Научная публикация
Журнал |
Журнал вычислительной математики и математической физики
ISSN: 0044-4669 |
||
---|---|---|---|
Вых. Данные | Год: 2025, Том: 65, Номер: 6, Страницы: 961-971 Страниц : 11 DOI: 10.31857/S0044466925060093 | ||
Ключевые слова | нелинейное волновое уравнение, обратная задача, томография, интегральная геометрия, единственность, устойчивость | ||
Авторы |
|
||
Организации |
|
Информация о финансировании (1)
1 | Институт математики им. С.Л. Соболева СО РАН | FWNF-2022-0009 |
Реферат:
Рассматривается квазилинейное гиперболическое уравнение, главная часть которого представляет собой чисто волновой оператор, а младшая часть содержит два нелинейных члена с коэффициентами p и q, имеющими компактный носитель, содержащийся в шаре B. Изучаются прямая задача о падении плоской волны на неоднородность, локализованную в B, и обратная задача, состоящая в определении коэффициентов p и q по информации о решении серии прямых задач, зависящих от направления падения плоской волны. Выписывается асимптотическое разложение решения прямой задачи в окрестности фронта бегущей плоской волны, и на этой основе обратная задача сводится к двум линейным задачам, решаемым последовательно одна за другой. Задача об определении коэффициента p приводится к классической задаче рентгеновской томографии, а задача об определении коэффициента q сводится к более сложной задаче интегральной геометрии. Последняя состоит в определении функции через интегралы от нее по прямым с некоторой заданной весовой функцией. Эта задача является новой, она исследуется и для нее устанавливается теорема единственности и устойчивости решения. Библ. 26.
Библиографическая ссылка:
Романов В.Г.
Обратная задача для квазилинейного волнового уравнения
Журнал вычислительной математики и математической физики. 2025. Т.65. №6. С.961-971. DOI: 10.31857/S0044466925060093 РИНЦ
Обратная задача для квазилинейного волнового уравнения
Журнал вычислительной математики и математической физики. 2025. Т.65. №6. С.961-971. DOI: 10.31857/S0044466925060093 РИНЦ
Даты:
Поступила в редакцию: | 28 нояб. 2024 г. |
Принята к публикации: | 27 мар. 2025 г. |
Опубликована в печати: | 14 июл. 2025 г. |
Опубликована online: | 14 июл. 2025 г. |
Идентификаторы БД:
РИНЦ: | 82577894 |
Цитирование в БД:
Пока нет цитирований