Numerical dispersion mitigation neural network with velocity model correction Научная публикация
| Журнал |
Computers and Geosciences
ISSN: 0098-3004 |
||
|---|---|---|---|
| Вых. Данные | Год: 2025, Том: 196, Номер статьи : 105806, Страниц : 12 DOI: 10.1016/j.cageo.2024.105806 | ||
| Ключевые слова | Seismic modeling U-net NDM-net Numerical dispersion Deep learning Digital earth model | ||
| Авторы |
|
||
| Организации |
|
Информация о финансировании (1)
| 1 | Российский научный фонд | 22-11-00004 |
Реферат:
The paper presents the Numerical Dispersion Mitigation neural network (NDM-net) to speed up seismic modeling. The idea of the NDM-net is to simulate the common-shot gathers for the entire set of source positions using a coarse grid. This solution can be computed fast but inaccurately. In addition, a small number of seismograms are generated using a fine enough grid to get an accurate solution. After that, the NDM-net is trained to map numerically polluted solutions to the accurate one and applied to correct the entire dataset. Previously, it was shown that NDM-net allows to speed up seismic modeling up to six times without noticeable loss of accuracy if the velocity model is fixed. In this paper, we focus on the applicability of NDM-net to the case where both the velocity model discretization and computational grid are corrected. We apply the NDM-net to suppress two types of numerical error: the numerical dispersion and the interface error.
Библиографическая ссылка:
Gondyul E.
, Lisitsa V.
, Gadylshin K.
, Vishnevsky D.
Numerical dispersion mitigation neural network with velocity model correction
Computers and Geosciences. 2025. V.196. 105806 :1-12. DOI: 10.1016/j.cageo.2024.105806 РИНЦ
Numerical dispersion mitigation neural network with velocity model correction
Computers and Geosciences. 2025. V.196. 105806 :1-12. DOI: 10.1016/j.cageo.2024.105806 РИНЦ
Даты:
| Поступила в редакцию: | 19 янв. 2024 г. |
| Принята к публикации: | 29 нояб. 2024 г. |
| Опубликована online: | 9 дек. 2024 г. |
| Опубликована в печати: | 12 дек. 2024 г. |
Идентификаторы БД:
| РИНЦ: | 80743181 |
Цитирование в БД:
Пока нет цитирований