Sciact
  • EN
  • RU

Injectivity Radius of the Prolate Ellipsoid of Revolution Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2025, Volume: 66, Number: 6, Pages: 1355-1367 Pages count : 13 DOI: 10.1134/s0037446625060023
Tags geodesic, Jacobi field, injectivity radius, conjugate points, exponential mapping, ellipsoid of revolution, elliptic integrals
Authors Berestovskii V.N. 1 , Mustafa A. 2
Affiliations
1 Sobolev Institute of Mathematics, Novosibirsk, Russia
2 Novosibirsk State University, Novosibirsk, Russia

Funding (2)

1 Sobolev Institute of Mathematics FWNF-2022-0006
2 Министерство науки и высшего образования РФ 075-15-2025-349

Abstract: The injectivity radius of an arbitrary prolate ellipsoid of revolution in three-dimensional Euclidean space is found. It is exactly equal to the distance along the double meridian between its conjugate points symmetric with respect to the pole and is smaller than one half of the length of the equator. A method for arbitrarily accurate computer calculations of the injectivity radius of an arbitrary prolate ellipsoid of revolution is developed and applied.
Cite: Berestovskii V.N. , Mustafa A.
Injectivity Radius of the Prolate Ellipsoid of Revolution
Siberian Mathematical Journal. 2025. V.66. N6. P.1355-1367. DOI: 10.1134/s0037446625060023 WOS Scopus РИНЦ OpenAlex
Original: Берестовский В.Н. , Мустафа А.
Радиус инъективности вытянутого эллипсоида вращения
Сибирский математический журнал. 2025. Т.66. №6. С.1015-1029. DOI: 10.33048/smzh.2025.66.602 РИНЦ
Dates:
Submitted: Jun 10, 2024
Accepted: Jul 7, 2025
Published print: Nov 24, 2025
Published online: Nov 24, 2025
Identifiers:
Web of science: WOS:001622319900011
Scopus: 2-s2.0-105022644320
Elibrary: 84013564
OpenAlex: W7106510503
Citing: Пока нет цитирований
Altmetrics: