New Formulas for the Inversion of the Radon Transform Full article
| Journal |
Doklady Mathematics
ISSN: 1064-5624 , E-ISSN: 1531-8362 |
||
|---|---|---|---|
| Output data | Year: 2025, Volume: 111, Number: 3, Pages: 163-166 Pages count : 4 DOI: 10.1134/s1064562425700139 | ||
| Tags | Radon transform, inversion formulas, integral geometry, probing, tomography, differential equation, discontinuous functions | ||
| Authors |
|
||
| Affiliations |
|
Funding (1)
| 1 | Sobolev Institute of Mathematics | FWNF-2022-0009 |
Abstract:
Classical inversion formulas for the integral Radon transform assume that the integrand is smooth. However, this restriction does not fully correspond to application of results in probing theory, which is the main area of application of the Radon transform. It would be more natural to assume that jump discontinuities are admissible for integrands. The paper presents several inversion formulas proved by the authors for piecewise continuous functions. The formulas are compared, and preliminary recommendations on their use for numerical algorithms are given.
Cite:
Anikonov D.S.
, Konovalova D.S.
New Formulas for the Inversion of the Radon Transform
Doklady Mathematics. 2025. V.111. N3. P.163-166. DOI: 10.1134/s1064562425700139 WOS Scopus OpenAlex
New Formulas for the Inversion of the Radon Transform
Doklady Mathematics. 2025. V.111. N3. P.163-166. DOI: 10.1134/s1064562425700139 WOS Scopus OpenAlex
Original:
Аниконов Д.С.
, Коновалова Д.С.
Новые формулы обращения преобразования Радона
Доклады Академии наук. Серия: Математика, информатика, процессы управления. 2025. Т.523. №1. С.11-14. DOI: 10.31857/S2686954325030027 РИНЦ
Новые формулы обращения преобразования Радона
Доклады Академии наук. Серия: Математика, информатика, процессы управления. 2025. Т.523. №1. С.11-14. DOI: 10.31857/S2686954325030027 РИНЦ
Dates:
| Submitted: | May 12, 2025 |
| Accepted: | May 29, 2025 |
| Published print: | Dec 9, 2025 |
| Published online: | Dec 9, 2025 |
Identifiers:
| Web of science: | WOS:001635416500011 |
| Scopus: | 2-s2.0-105024527255 |
| OpenAlex: | W4417162868 |
Citing:
Пока нет цитирований