Sciact
  • EN
  • RU

On the Cardinality Spectrum and the Number of Latin Bitrades of Order 3 Научная публикация

Журнал Problems of Information Transmission
ISSN: 0032-9460 , E-ISSN: 1608-3253
Вых. Данные Год: 2019, Том: 55, Номер: 4, Страницы: 343-365 Страниц : 23 DOI: 10.1134/s0032946019040021
Ключевые слова Latin bitrades, unitrades, Reed-Muller codes, combinatorial configurations, Boolean functions
Авторы Krotov D.S. 1 , Potapov V.N. 1
Организации
1 Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia

Реферат: By a (Latin) unitrade of order k, we call a subset of vertices of the Hamming graph H(n,k) that intersects any maximal clique at either 0 or 2 vertices. A bitrade is a bipartite unitrade, i.e., a unitrade that can be split into two independent subsets. We study the cardinality spectrum of bitrades in the Hamming graph H(n,k) with k=3 (ternary hypercube) and the growth of the number of such bitrades as n grows. In particular, we determine all possible small (up to 2.5·2^n) and large (from 14·3^{n-3}) cardinalities of bitrades of dimension n and prove that the cardinality of a bitrade takes only values equivalent to 0 or 2n modulo 3 (this result can be treated in terms of a ternary Reed–Muller type code). A part of the results are valid for an arbitrary k. For k=3 and n→∞ we prove that the number of nonequivalent bitrades is not less than 2^{(2/3−o(1))n} and not greater than 2^{αn}, α<2 (the growth order of the double logarithm of this number remains unknown). Alternatively, the studied set Bn of bitrades of order 3 can be defined as follows: B_0 consists of three rationals −1, 0, 1; B_n consists of ordered triples (a, b, c) of elements from B_{n-1} such that a+b+c=0.
Библиографическая ссылка: Krotov D.S. , Potapov V.N.
On the Cardinality Spectrum and the Number of Latin Bitrades of Order 3
Problems of Information Transmission. 2019. V.55. N4. P.343-365. DOI: 10.1134/s0032946019040021 WOS Scopus РИНЦ OpenAlex
Оригинальная: Кротов Д.С. , Потапов В.Н.
О спектре мощностей и числе латинских битрейдов порядка 3
Проблемы передачи информации. 2019. Т.55. №4. С.52-75. DOI: 10.1134/s0555292319040028 РИНЦ OpenAlex
Даты:
Поступила в редакцию: 24 дек. 2018 г.
Принята к публикации: 12 нояб. 2019 г.
Опубликована online: 24 янв. 2020 г.
Идентификаторы БД:
Web of science: WOS:000520150600002
Scopus: 2-s2.0-85078134798
РИНЦ: 43239749
OpenAlex: W3001040206
Цитирование в БД:
БД Цитирований
Web of science 2
Scopus 3
РИНЦ 3
OpenAlex 6
Альметрики: