Sciact
  • EN
  • RU

Compression of Deep Neural Network for Acute Ischemic Stroke Segmentation Научная публикация

Конференция 2022 Ural-Siberian Conference on Computational Technologies in Cognitive Science, Genomics and Biomedicine
04-08 июл. 2022 , Новосибирск
Сборник 2022 Ural-Siberian Conference on Computational Technologies in Cognitive Science, Genomics and Biomedicine (CSGB), 7-8 July, Novosibirsk, Russia
Сборник, 2022. 392 c.
Вых. Данные Год: 2022, Страницы: 240-245 Страниц : 6 DOI: 10.1109/CSGB56354.2022.9865656
Ключевые слова Acute Stroke; Attention Mechanisms; Pruning; Quantization; U-Net
Авторы Mikhailapov D. 1 , Tulupov A. 2 , Alyamkin S. 1 , Berikov V. 3
Организации
1 Expasoft Llc, Novosibirsk, Russian Federation
2 International Tomography Center SB RAS, Mrt Technology Laboratory, Novosibirsk, Russian Federation
3 Sobolev Institute of Mathematics SB RAS, Data Analysis Laboratory, Novosibirsk, Russian Federation

Информация о финансировании (2)

1 Институт математики им. С.Л. Соболева СО РАН FWNF-2022-0015
2 Российский фонд фундаментальных исследований 19-29-01175

Реферат: In this paper, we study the method of automatic recognition of acute ischemic stroke using non-contrast computed tomography images of the brain. We focus on the application of deep neural network model based on U-Net architecture and its modifications using the Attention mechanism. This approach makes it possible to achieve a high accuracy in the segmentation of the brain affected areas. However, such models have large demands on the computing power of devices, which complicates their practical use on computer tomography workstations. The purpose of this work is to study the application of compression methods for existing deep neural network models. In particular, the int8 quantization method is used. This method allows one to switch from floating-point calculations (float32) to integer calculations (int8), which provides a more compact representation of the model and the use of high-performance vectorized operations on many hardware platforms. The pruning is also used. It is shown that the compressed models (up to 70% pruning ratio) are still able to predict the affected areas of the brain with a sufficiently high degree of accuracy. © 2022 IEEE.
Библиографическая ссылка: Mikhailapov D. , Tulupov A. , Alyamkin S. , Berikov V.
Compression of Deep Neural Network for Acute Ischemic Stroke Segmentation
В сборнике 2022 Ural-Siberian Conference on Computational Technologies in Cognitive Science, Genomics and Biomedicine (CSGB), 7-8 July, Novosibirsk, Russia. 2022. – C.240-245. DOI: 10.1109/CSGB56354.2022.9865656 Scopus OpenAlex
Идентификаторы БД:
Scopus: 2-s2.0-85138471478
OpenAlex: W4293812556
Цитирование в БД: Пока нет цитирований
Альметрики: