Вектор Шепли однородных кооперативных игр Научная публикация
Журнал |
Журнал вычислительной математики и математической физики
ISSN: 0044-4669 |
||
---|---|---|---|
Вых. Данные | Год: 2023, Том: 63, Номер: 3, Страницы: 474-490 Страниц : 17 DOI: 10.31857/S0044466923030122 | ||
Ключевые слова | вектор Шепли, функционал Шепли, однородная кооперативная игра, полярная форма однородной игры, v-интеграл | ||
Авторы |
|
||
Организации |
|
Информация о финансировании (2)
1 | Институт математики им. С.Л. Соболева СО РАН | FWNF-2022-0019 |
2 | Российский фонд фундаментальных исследований | 19-10-00910 |
Реферат:
Для полиномиальных кооперативных игр дается описание интегрального представления вектора Шепли. Это представление осуществляется с помощью так называемого функционала Шепли. Анализируется взаимосвязь предложенного варианта вектора Шепли и полярных форм однородных полиномиальных игр как для конечного, так и бесконечного числа участников. Особое внимание уделяется некоторым классам однородных кооперативных игр, порожденных произведениями неатомических мер. Отличительной чертой предлагаемого подхода является систематическое использование продолжений полиномиальных функций множества до отвечающих им мер на симметрических степенях исходных измеримых пространств.
Библиографическая ссылка:
Васильев В.А.
Вектор Шепли однородных кооперативных игр
Журнал вычислительной математики и математической физики. 2023. Т.63. №3. С.474-490. DOI: 10.31857/S0044466923030122 РИНЦ OpenAlex
Вектор Шепли однородных кооперативных игр
Журнал вычислительной математики и математической физики. 2023. Т.63. №3. С.474-490. DOI: 10.31857/S0044466923030122 РИНЦ OpenAlex
Переводная:
Vasil’ev V.A.
Shapley value of homogeneous cooperative games
Computational Mathematics and Mathematical Physics. 2023. V.63. N3. P.450-465. DOI: 10.1134/S0965542523030120 WOS Scopus РИНЦ OpenAlex
Shapley value of homogeneous cooperative games
Computational Mathematics and Mathematical Physics. 2023. V.63. N3. P.450-465. DOI: 10.1134/S0965542523030120 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: | 1 авг. 2022 г. |
Принята к публикации: | 9 сент. 2022 г. |
Опубликована в печати: | 2 мая 2023 г. |
Опубликована online: | 2 мая 2023 г. |
Идентификаторы БД:
РИНЦ: | 50435766 |
OpenAlex: | W4394831064 |
Цитирование в БД:
БД | Цитирований |
---|---|
РИНЦ | 1 |