Sciact
  • EN
  • RU

The Forecasting of the Spread of Infectious Diseases Based on Conditional Generative Adversarial Networks Научная публикация

Журнал Mathematics
, E-ISSN: 2227-7390
Вых. Данные Год: 2024, Том: 12, Номер: 19, Номер статьи : 3044, Страниц : 22 DOI: 10.3390/math12193044
Ключевые слова generative adversarial networks; conditional GANs; regularization; deep learning; time series; COVID-19; forecasting
Авторы Krivorotko Olga 1 , Zyatkov Nikolay 1
Организации
1 Sobolev Institute of Mathematics SB RAS, Akademician Koptuyg Ave. 4, 630090 Novosibirsk, Russia

Информация о финансировании (1)

1 Институт математики им. С.Л. Соболева СО РАН FWNF-2024-0002

Реферат: New epidemics encourage the development of new mathematical models of the spread and forecasting of infectious diseases. Statistical epidemiology data are characterized by incomplete and inexact time series, which leads to an unstable and non-unique forecasting of infectious diseases. In this paper, a model of a conditional generative adversarial neural network (CGAN) for modeling and forecasting COVID-19 in St. Petersburg is constructed. It takes 20 processed historical statistics as a condition and is based on the solution of the minimax problem. The CGAN builds a short-term forecast of the number of newly diagnosed COVID-19 cases in the region for 5 days ahead. The CGANapproach allows modeling the distribution of statistical data, which allows obtaining the required amount of training data from the resulting distribution. When comparing the forecasting results with the classical differential SEIR-HCD model and a recurrent neural network with the same input parameters, it was shown that the forecast errors of all three models are in the same range. It is shown that the prediction error of the bagging model based on three models is lower than the results of each model separately
Библиографическая ссылка: Krivorotko O. , Zyatkov N.
The Forecasting of the Spread of Infectious Diseases Based on Conditional Generative Adversarial Networks
Mathematics. 2024. V.12. N19. 3044 :1-22. DOI: 10.3390/math12193044 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: 12 авг. 2024 г.
Принята к публикации: 26 сент. 2024 г.
Опубликована в печати: 28 сент. 2024 г.
Идентификаторы БД:
Web of science: WOS:001331868700001
Scopus: 2-s2.0-85206578737
РИНЦ: 74187626
OpenAlex: W4402991258
Цитирование в БД: Пока нет цитирований
Альметрики: