Sciact
  • EN
  • RU

Functional Limit Theorems for Compound Renewal Processes Научная публикация

Журнал Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Вых. Данные Год: 2019, Том: 60, Номер: 1, Страницы: 27-40 Страниц : 14 DOI: 10.1134/S003744661901004X
Ключевые слова Anscombe’s theorem; compound renewal processes; convergence to a stable process; functional limit theorems; invariance principle
Авторы Borovkov A.A. 1,2
Организации
1 Sobolev Institute of Mathematics, Novosibirsk State University, Novosibirsk, Russian Federation
2 Novosibirsk State University

Реферат: We generalize Anscombe’s Theorem to the case of stochastic processes converging to a continuous random process. As applications, we find a simple proof of an invariance principle for compound renewal processes (CRPs) in the case of finite variance of the elements of the control sequence. We find conditions, close to minimal ones, of the weak convergence of CRPs in the metric space D with metrics of two types to stable processes in the case of infinite variance. They turn out narrower than the conditions for convergence of a distribution in this space. © 2019, Pleiades Publishing, Ltd.
Библиографическая ссылка: Borovkov A.A.
Functional Limit Theorems for Compound Renewal Processes
Siberian Mathematical Journal. 2019. V.60. N1. P.27-40. DOI: 10.1134/S003744661901004X WOS Scopus OpenAlex
Оригинальная: Боровков А.А.
Функциональные предельные теоремы для обобщенных процессов восстановления
Сибирский математический журнал. 2019. Т.60. №1. С.37–54. DOI: 10.33048/smzh.2019.60.104 РИНЦ OpenAlex
Идентификаторы БД:
Web of science: WOS:000464720000004
Scopus: 2-s2.0-85065244952
OpenAlex: W2936414956
Цитирование в БД:
БД Цитирований
Scopus 2
OpenAlex 3
Web of science 2
Альметрики: