Sciact
  • EN
  • RU

Machine Learning Models for Nocturnal Hypoglycemia Prediction in Hospitalized Patients with Type 1 Diabetes Научная публикация

Сборник Selected papers from the 2nd conference with international participation “Basic research in endocrinology: a modern strategy for the development and technologies of personalized medicine”
Сборник, MDPI AG, Базель. Basel.2025. 150 c. ISBN 978-3-7258-4017-5. РИНЦ
Вых. Данные Год: 2025, Страницы: 129-139 Страниц : 11
Ключевые слова type 1 diabetes; hypoglycemia; continuous glucose monitoring; machine learning; random forest; artificial neuron networks; prediction
Авторы Berikov Vladimir B. 1,2 , Kutnenko Olga A. 2 , Semenova Julia F. 1 , Klimontov Vadim V. 1
Организации
1 Laboratory of Endocrinology, Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL—Branch of IC&G SB RAS)
2 Laboratory of Data Analysis, Sobolev Institute of Mathematics, Siberian Branch of Russian Academy of Sciences

Информация о финансировании (1)

1 Российский научный фонд 20-15-00057

Реферат: Nocturnal hypoglycemia (NH) is a dangerous complication of insulin therapy that often goes undetected. In this study, we aimed to generate machine learning (ML)-based models for short-term NH prediction in hospitalized patients with type 1 diabetes (T1D). The models were trained on continuous glucose monitoring (CGM) data obtained from 406 adult patients admitted to a tertiary referral hospital. Eight CGM-derived metrics of glycemic control and glucose variability were included in the models. Combinations of CGM and clinical data (23 parameters) were also assessed. Random Forest (RF), Logistic Linear Regression with Lasso regularization, and Artificial Neuron Networks algorithms were applied. In our models, RF provided the best prediction accuracy with 15 min and 30 min prediction horizons. The addition of clinical parameters slightly improved the prediction accuracy of most models, whereas oversampling and undersampling procedures did not have significant effects. The areas under the curve of the best models based on CGM and clinical data with 15 min and 30 min prediction horizons were 0.97 and 0.942, respectively. Basal insulin dose, diabetes duration, proteinuria, and HbA1c were the most important clinical predictors of NH assessed by RF. In conclusion, ML is a promising approach to personalized prediction of NH in hospitalized patients with T1D.
Библиографическая ссылка: Berikov V.B. , Kutnenko O.A. , Semenova J.F. , Klimontov V.V.
Machine Learning Models for Nocturnal Hypoglycemia Prediction in Hospitalized Patients with Type 1 Diabetes
В сборнике Selected papers from the 2nd conference with international participation “Basic research in endocrinology: a modern strategy for the development and technologies of personalized medicine”. – MDPI AG, Базель., 2025. – C.129-139. – ISBN 978-3-7258-4017-5. РИНЦ
Даты:
Поступила в редакцию: 21 июн. 2022 г.
Принята к публикации: 29 июл. 2022 г.
Опубликована в печати: 23 июн. 2025 г.
Опубликована online: 23 июн. 2025 г.
Идентификаторы БД:
РИНЦ: 82490186
Цитирование в БД: Пока нет цитирований